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 

Abstract—The letter proposes a new method which analyses the 

states of transformers in Power Flow studies, by directly 

considering the limits of both the transformer state (e.g minimum 

and maximum tap) and the control (e.g. minimum and maximum 

voltage). The method uses an empirically developed cost function, 

which rapidly increases, where the transformer limits are 

exceeded and decreases, where they are not. Unconstrained 

optimization techniques are used to minimize the cost function. 

Since the structural limits (e.g maximum or minimum tap) are 

stricter than the control limits (e.g. minimum and maximum 

voltage), the cost function is designed so that its increase rate for 

exceeding control limits is lower than if structural limits are 

exceeded. The method is developed for phase-shifting, tap-

changing and quadrature-boosting transformers and is tested on 

the IEEE 300 bus system with six devices operating 

simultaneously. 

 
Index Terms— Power flow control limits, Power flow 

transformer modelling, Unconstrained optimizations. 

I.  INTRODUCTION 

HE presence of transformers in power flow (PF) studies 

creates new variables since their states are generally not 

known beforehand and are determined by their control criteria. 

The operational manner of transformers is that they alter their 

state (e.g. their tap) to keep the controlled variable (e.g. voltage 

magnitude) between a minimum and a maximum value. Since 

transformer states are physically restricted, the variable 

reflecting their state is also restricted to a limited interval.  

 The general mechanism for incorporating transformers in PF 

studies is to set the control criterion to a specific value, and then 

find the corresponding transformer states. The way in which the 

new transformer states are calculated is by solving an equation 

system, where the transformer states are the unknown variables, 

and the transformer control criteria provide the equations. As 

the underlying PF algorithm dictates the numerical approach of 

the calculation, different techniques must be applied for 

different PF algorithms. For the Newton-Raphson type PF, for 

example, the method in [1] is applicable, while for the 

Holomorphic Embedding type PF, the method in [2] must be 

used instead. 

 The technique of modelling the transformers by producing 

their own equations, has the necessity, that the control criteria 

of the transformers are strictly defined as a single dimensional 

value. This may cause issues when applied to a real system. The 
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reason for this is that the control criteria can only be strictly 

specified to a single value, when the user, knows that a 

controlled variable has exceeded its limits, which requires 

running a PF. Likewise, the control criteria can only be 

foregone (and the device replaced with a fixed transformer) if 

calculations show that the device structural limits would 

otherwise be exceeded for a given specified control. In essence, 

the problem with the established transformer analysis 

techniques is that whenever a limit, be it a structural or a control 

limit, is reached, the underlying system of equations is changed 

and must be solved again. 

In this paper, a method which uses unconstrained 

optimization techniques to model transformers by accounting 

for the limits directly, is presented. The method construct a cost 

function (CF), which has the property that it is always positive, 

and rapidly increases in case a transformer limit is exceeded. 

Since control and structural limits are not equally important (the 

control limits may be respected only for as long as the structural 

limits are respected) the CF has a different structure for the two 

types of limits. The considered transformer types are the 

On-Load Tap Changer (OLTC), the Phase Shifting Transformer 

(PST) and the Quadrature Boosting Transformer (QBT). 

The CF is illustrated in Fig. 1 for the case of a single PST 

operating in the IEEE 300 bus system. The rectangle indicates 

the transformer control and phase limits, and the circles 

represent the possible solutions for an illustrative case.  

 
 Fig. 1.  Solution illustration. 

Applying Transformer Limits in Power Flow 

Studies Using Unconstrained Optimizations 
Gorazd Bone, Miloš Pantoš, Member, IEEE and Rafael Mihalič, Member, IEEE 

T 



 2 

In the rest of the letter, the CF construction is detailed in 

Section II. and numerical test results are in Section III. The 

conclusions drawn from this letter are in Section IV.  

II.  METHOD DEVELOPMENT 

The CF is a dimensionless function obtained by summing 

partial CF elements of each transformer. Each transformer has 

two CF elements, one corresponding to the structural and the 

other to the control criterion of the device. For sake of 

generality, let us denote the transformer state with γ, which is 

the tap of an OLTC (tOLTC), the phase-shift of a PST (φPST), or 

the relative value of quadrature injected voltage of a QBT 

(cQBT); and the control variable with ψ, which is the voltage 

magnitude for the OLTC (VOLTC), or the active power flow for 

the PST (PPST) and QBT (PQBT)). The CF can be expressed as: 
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where N is the number of all transformers and ξγ-i and ξψ-i are 

the CF elements that correspond to the structural and control 

limits of the i-th transformer respectively. 

The first part of the CF uses the even-order power function 

(EOPF). The higher the power of the EOPF, the quicker it will 

rise if the absolute value of the argument is above 1, and the 

quicker it will fall towards zero if the absolute value is below 1. 

The CF element ξγ(γ), which operates on γ, is given in (2), where 

n is an arbitrary integer used to control the sharpness, and γmin 

and γmax are the minimum and maximum bounds respectively.  
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When building the part of the CF that corresponds to the 

control criterion, ξψ(ψ), we must acknowledge that the device 

will maintain the controlled variable within limits only if 

permitted by the structural limits. If the device cannot keep the 

controlled variable within limits, it will forego the control and 

stay at the minimum or maximum structural limit. 

To embody the above described in the CF we lean on the 

bell-shaped membership-function (BSMF) [3]. An inverted 

BSMF (obtained by subtracting the BSMF from 1) is multiplied 

by an EOPF structured as in (2). The order of this EOPF is lower 

than that used in (2). We establish this by using another 

arbitrary integer m, which must be lower than n. The lower 

order of the EOPF used for ξψ(ψ) makes it have less of an impact 

outside of min-max limits of ψ in the total CF as compared to 

the ξγ(γ), while multiplication with the inverted BSMF makes 

ξψ(ψ) fall quickly to zero if ψ is within limits.  
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Fig. 2 illustrates how the developed cost function elements, 

ξγ(γ) and ξψ(ψ), change with the parameters n and m. 

 

 
Fig. 2.  Cost function elements ξγ(γ) and ξψ(ψ). 

A.  Applying the QBT to PF data 

The PF programs take the transformer taps and phases 

directly as their input data, which makes applying the state of 

OLTC and PST devices straightforward. The quadrature 

injected voltage of QBT devices, however, does not have a 

direct representation. The states of QBT devices (cQBT) must be 

expressed in terms of transformer tap and phase as shown in (7) 

and illustrated in Fig. 3. 
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Fig. 3.  Phasor diagram of QBT. 

B.  On deciding the parameters n and m 

The performance of the method is dependent upon arbitrary 

parameters n and m. Deciding the value for these parameters is 

discussed next. It should be noted that parameter n influences 

the impact of structural constraints of the transformers on the 

CF, while m influences the impact of control criteria. Therefore, 

if for a specific calculation we find that the structural limits are 

exceeded, n is to be increased. 

Increasing only parameter n, however, may make the 

optimization algorithm overlook the effect of the control 

criteria. In such a case, m must also be increased so that the 

effect of the function ξψ(ψ) in the CF is emphasized.  

Setting m and n is case specific. Increasing one with respect 
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to the other will emphasize one CF element with respect to the 

other. In our tests, the typical values used for m and n were 

within the region of a few tens, well below one hundred.  

C.  Physically attainable state of transformers 

There are two key aspects to mention regarding the solution 

with the proposed method. The first aspect is related to the fact 

that the proposed method operates by assuming continuous 

transformer states. This is not related to the real-world case, 

where the transformers have discrete tap settings attainable. 

After the solution is obtained, it is therefore recommended that 

an additional PF is ran where the transformer states are set to 

the closes physically attainable ones.  

Aside from the above relation to the discrete world, there is 

also an additional consequence of using unconstrained 

optimization techniques for enforcing constraints. In order for 

some element of the CF to start rapidly increasing, the 

respective variable (either the state of transformer or the 

controlled variable) must be exceeding its limits. Therefore, in 

order for the structural variables γ to have a relatively large 

impact on the CF, they have to exceed their bounds, albeit 

slightly. The consequence of this fact is that, when transformers 

are unable to perform their designated control, and therefore 

reach their structural limits, their structural variables γ are 

found to be slightly outside of the min-max bounds. A case 

where this happens is illustrated in Section III.B. A final PF 

must therefore be ran where the transformers which exceed 

their bounds have their states set to the closest physically 

attainable state—at the respective limit. 

III.  NUMERICAL EXAMPLES 

The method was tested on the IEEE 300 bus system by 

inserting two transformers of each type (2 OLTCs, 2 PSTs, 

2QBTs). Table 1 shows the transformer locations as well as the 

base-case values, present in the original IEEE 300 bus system. 

In the optimization approach, the PF software that was ran as a 

subroutine was MatPower [4].  

Two cases were performed. In the first case, the structural 

limits were designed so that they did not interfere with the 

control, and all six transformers were enabled to fulfill their 

control criteria. In the second case, one transformer of each type 

had its structural limits more stringently set, so that the 

corresponding control could not be fulfilled and the method had 

to bring the respective device to its structural limit. The initial 

conditions of both cases were set to a flat start, i.e. the taps are 

set to 1 pu and the phase-shifts to 0°. In both cases, the 

following values for parameters n and m were used: 

 

 12    ,    3n m    (8) 

Table 1. Location of transformers and base-case values, IEEE 300 bus system. 

Device OLTC 1 OLTC 2 PST 1 PST 2 QBT 1 QBT 2 

Branch 100 310 150 350 200 250 

Pbase [pu] / / 1.405 -1.907 0.995 -0.274 

Vbase [pu] 1.0216 1.0180 / / / / 

A.  Case 1 – Soft structural constraints 

In this case, the device structural limitations were set beyond 

what we may encounter in practice, so that only the control 

criteria are effective in the CF. The device parameters and the 

solution data for this case are shown in Table 2.  

 
Table 2. Transformer control and state limits and obtained solution for case 1. 

 
γmin γmax 

Pmin or 

Vmin [pu] 

Pmax or 

Vmax [pu] 
γfinal 

Pfinal or 

Vfinal [pu] 

OLTC 1 0.95 1.25   1.05  1.10   1.234 1.0572 

OLTC 2 0.95 1.10   1.05  1.10  1.076 1.0548 

PST 1 -20.0 20.0   0.00  1.00 12.95 0.3917 

PST 2 -70.0 20.0 -1.00  0.00 -62.13 -0.0018 

QBT 1 -0.60 0.60 -2.00 -1.00 0.579 -1.0039 

QBT 2 -0.30 0.30   4.00  5.00 -0.274 4.0391 

B.  Case 2 – Stringent structural constraints 

In this case, the transformer structural limits were set to more 

realistic values. The structural limits in this case affected the 

control capabilities, and some transformers were unable to carry 

out their desired control. The bounds of transformer states and 

control, as well as the solutions, are shown in Table 3. 

 
Table 3: Transformer control and state limits and obtained solution for case 1. 

 
γmin γmax 

Pmin or 

Vmin [pu] 

Pmax or 

Vmax [pu] 
γfinal 

Pfinal or 

Vfinal [pu] 

OLTC 1 0.95 1.05   1.05  1.10   1.051 1.0298 

OLTC 2 0.95 1.10   1.05  1.10  1.071 1.0527 

PST 1 -20.0 20.0   0.00  1.00 9.93 0.6294 

PST 2 -20.0 20.0 -1.00  0.00 -21.61 -1.5332 

QBT 1 -0.30 0.30 -2.00 -1.00 0.308 -0.7212 

QBT 2 -0.30 0.30   4.00  5.00 -0.275 4.0547 

IV.  CONCLUSIONS 

This letter proposes a method, which directly implements 

limits of transformer-type devices (OLTC, PST and QBT), by 

using an unconstrained optimization approach, to minimize an 

empirically developed cost function. Since an unconstrained 

optimization approach is used, the method provides information 

about transformer states using a single run of an iterative 

procedure. The method was verified on the IEEE 300 bus 

system with 6 transformers (2 OLTCs, 2 PSTs and 2 QBTs) 

operating at once. 

V.  REFERENCES 

[1] C. R. Fuerte-Esquivel and E. Acha, “A Newton-type algorithm for the 

control of power flow in electrical power networks,” IEEE Trans. 

Power Syst., vol. 12, no. 4, pp. 1474–1480, Nov. 1997. 

[2] M. Basiri-Kejani and E. Gholipour, “Holomorphic Embedding Load-

Flow Modeling of Thyristor-Based FACTS Controllers,” IEEE Trans. 

Power Syst., vol. 32, no. 6, pp. 4871–4879, Nov. 2017. 

[3] J. Zhao and B. K. Bose, “Evaluation of membership functions for fuzzy 

logic controlled induction motor drive,” in IEEE 2002 28th Annual 

Conference of the Industrial Electronics Society. IECON 02, 2002, vol. 

1, pp. 229–234 vol.1. 

[4] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, 

“MATPOWER: Steady-State Operations, Planning, and Analysis Tools 

for Power Systems Research and Education,” IEEE Trans. Power Syst., 

vol. 26, no. 1, pp. 12–19, Feb. 2011. 

 


